The realization space is [1 1 0 x1^2 - x1 0 1 1 0 x1^3 - x1^2 1 x1] [0 1 1 2*x1^2 - 2*x1 + 1 0 0 1 x1 - 1 2*x1^3 - 2*x1^2 + x1 -x1 + 1 -x1^2 + 2*x1 - 1] [0 0 0 0 1 1 1 -x1 x1^2 - 2*x1 + 1 x1 x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (2*x1^11 - 4*x1^10 - 2*x1^9 + 19*x1^8 - 35*x1^7 + 35*x1^6 - 21*x1^5 + 7*x1^4 - x1^3) avoiding the zero loci of the polynomials RingElem[x1, x1 - 1, x1^3 - x1 + 1, 2*x1^5 - x1^4 - 3*x1^3 + 6*x1^2 - 4*x1 + 1, x1^2 - x1 + 1, x1^3 + x1^2 - 2*x1 + 1, x1^4 + x1^3 - 3*x1^2 + 3*x1 - 1, 2*x1^2 - 2*x1 + 1, 2*x1 - 1, x1^4 - 2*x1^2 + 3*x1 - 1]